Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 404
Filter
1.
Prog Mater Sci ; 1422024 Apr.
Article in English | MEDLINE | ID: mdl-38745676

ABSTRACT

Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems.

2.
Plant Cell ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701330

ABSTRACT

Grain and flag leaf size are two important agronomic traits that influence grain yield in rice (Oryza sativa). Many QTLs and genes that regulate these traits individually have been identified, however, few QTLs and genes that simultaneously control these two traits have been identified. In this study, we conducted a genome-wide association analysis in rice and detected a major locus, WIDTH OF LEAF AND GRAIN (WLG), that associated with both grain and flag leaf width. WLG encodes a RING-domain E3 ubiquitin ligase. WLGhap.B, which possesses five SNP variations compared to WLGhap.A, encodes a protein with enhanced ubiquitination activity that confers increased rice leaf width and grain size, whereas mutation of WLG leads to narrower leaves and smaller grains. Both WLGhap.A and WLGhap.B interact with LARGE2, a HETC-type E3 ligase, however, WLGhap.B exhibits stronger interaction with LARGE2, thus higher ubiquitination activity towards LARGE2 compared with WLGhap.A. Lysine1021 is crucial for the ubiquitination of LARGE2 by WLG. Loss-of-function of LARGE2 in wlg-1 phenocopies large2-c in grain and leaf width, suggesting that WLG acts upstream of LARGE2. These findings reveal the genetic and molecular mechanism by which the WLG-LARGE2 module mediates grain and leaf size in rice, and suggest the potential of WLGhap.B in improving rice yield.

3.
Water Res X ; 23: 100224, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38711798

ABSTRACT

The ongoing evolution of SARS-CoV-2 is a significant concern, especially with the decrease in clinical sequencing efforts, which impedes the ability of public health sectors to prepare for the emergence of new variants and potential COVID-19 outbreaks. Wastewater-based epidemiology (WBE) has been proposed as a surveillance program to detect and monitor the SARS-CoV-2 variants being transmitted in communities. However, research is limited in evaluating the effectiveness of wastewater collection at sentinel sites for monitoring disease prevalence and variant dynamics, especially in terms of inferring the epidemic patterns on a broader scale, such as at the state/province level. This study utilized a multiplexed tiling amplicon-based sequencing (ATOPlex) to track the longitudinal dynamics of variant of concern (VOC) in wastewater collected from municipalities in Queensland, Australia, spanning from 2020 to 2022. We demonstrated that wastewater epidemiology measured by ATOPlex exhibited a strong and consistent correlation with the number of daily confirmed cases. The VOC dynamics observed in wastewater closely aligned with the dynamic profile reported by clinical sequencing. Wastewater sequencing has the potential to provide early warning information for emerging variants. These findings suggest that WBE at sentinel sites, coupled with sensitive sequencing methods, provides a reliable and long-term disease surveillance strategy.

4.
J Hazard Mater ; 471: 134363, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38663291

ABSTRACT

Degradation of organics in high-salinity wastewater is beneficial to meeting the requirement of zero liquid discharge for coking wastewater treatment. Creating efficient and stable performance catalysts for high-salinity wastewater treatment is vital in catalytic ozonation process. Compared with ozonation alone, Mn and Ce co-doped γ-Al2O3 could remarkably enhance activities of catalytic ozonation for chemical oxygen demand (COD) removal (38.9%) of brine derived from a two-stage reverse osmosis treatment. Experimental and theoretical calculation results indicate that introducing Mn could increase the active points of catalyst surface, and introducing Ce could optimize d-band electronic structures and promote the electron transport capacity, enhancing HO• bound to the catalyst surface ([HO•]ads) generation. [HO•]ads plays key roles for degrading the intermediates and transfer them into low molecular weight organics, and further decrease COD, molecular weights and number of organics in reverse osmosis concentrate. Under the same reaction conditions, the presence of Mn/γ-Al2O3 catalyst can reduce ΔO3/ΔCOD by at least 37.6% compared to ozonation alone. Furthermore, Mn-Ce/γ-Al2O3 catalytic ozonation can reduce the ΔO3/ΔCOD from 2.6 of Mn/γ-Al2O3 catalytic ozonation to 0.9 in the case of achieving similar COD removal. Catalytic ozonation has the potential to treat reverse osmosis concentrate derived from bio-treated coking wastewater reclamation.

5.
Int J Biol Macromol ; 267(Pt 1): 131438, 2024 May.
Article in English | MEDLINE | ID: mdl-38583845

ABSTRACT

A glutenin (G)-chitosan (CS) complex (G-CS) was cross-linked by water annealing with aim to prepare structured 3D porous cultured meat scaffolds (CMS) here. The CMS has pore diameters ranging from 18 to 67 µm and compressive moduli from 16.09 to 60.35 kPa, along with the mixing ratio of G/CS. SEM showed the porous organized structure of CMS. FTIR and CD showed the increscent content of α-helix and ß-sheet of G and strengthened hydrogen-bondings among G-CS molecules, which strengthened the stiffness of G-CS. Raman spectra exhibited an increase of G concentration resulted in higher crosslinking of disulfide-bonds in G-CS, which aggrandized the bridging effect of G-CS and maintained its three-dimensional network. Cell viability assay and immuno-fluorescence staining showed that G-CS effectively facilitated the growth and myogenic differentiation of porcine skeletal muscle satellite cells (PSCs). CLSM displayed that cells first occupied the angular space of hexagon and then ring-growth circle of PSCs were orderly formed on G-CS. The texture and color of CMS which loaded proliferated PSCs were fresh-meat like. These results showed that physical cross-linked G-CS scaffolds are the biocompatible and stable adaptable extracellular matrix with appropriate architectural cues and natural micro-environment for structured CM models.


Subject(s)
Chitosan , Meat , Tissue Scaffolds , Chitosan/chemistry , Animals , Tissue Scaffolds/chemistry , Porosity , Swine , Tissue Engineering/methods , Cell Survival/drug effects , Biocompatible Materials/chemistry , Cell Differentiation/drug effects , Cell Proliferation/drug effects , In Vitro Meat
6.
Sci Total Environ ; 929: 172320, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38614352

ABSTRACT

With China's commitment to reach carbon peak by 2030 and achieve carbon neutrality by 2060, it is particularly important to obtain terrestrial ecosystem carbon fluxes with low uncertainty both globally and in China. The use of more observation data may help reduce the uncertainty of inverting carbon fluxes. This study uses the observation data from global stations, background stations and provincial stations in China, as well as the OCO-2 satellite, and uses the China Carbon Monitoring, Verification and Supporting System for Global (CCMVS-G) to estimate the carbon fluxes of global and Chinese terrestrial ecosystems from 2019 to 2021. The results revealed that the global terrestrial ecosystem carbon sink was approximately -3.40 Pg C/yr from 2019 to 2021. The carbon sinks in the Northern Hemisphere are large, especially in Asia, North America, and Europe. From 2019 to 2021, the carbon sink of China's terrestrial ecosystem was approximately -0.44 Pg C/yr. Carbon sinks exhibit significant seasonal and interannual variations in China. After assimilating the observation data, the uncertainty of the posterior flux is smaller than that of the prior flux, a more reasonable distribution of carbon sources and sinks can be obtained, and more accurate boundary conditions can be provided for the China Carbon Monitoring, Verification and Supporting System for Regional (CCMVS-R). In the future, it is important to establish a well-designed CO2 ground-based observation network.

7.
Medicine (Baltimore) ; 103(17): e37930, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669364

ABSTRACT

BACKGROUND: In recent years, the incidence of menopause insomnia has gradually increased, seriously affecting women's physical and mental health. METHODS: Total 82 climacteric insomnia patients received from January 2021 to January 2023 were divided into 2 groups at random. In control group, 41 cases received conventional Western medicine, and in study group, 41 cases received acupuncture combined with Ningshen mixture. Clinical effectiveness of both groups was compared, neurotransmitter levels, TCM syndrome integral and Pittsburgh Sleep Quality Index (PSQI) were assessed in both groups. Meanwhile, the recurrence rate and safety were evaluated in 2 groups. RESULTS: The curative effect in study group was better than that in control group (P < .05). After treatment, the expressions of 5-hydroxytryptamine and ß-endorphin (ß-EP) in study group were higher than control group (P < .05); TCM syndrome scores and PSQI scores in study group were lower than control group (P < .05). The total recurrence rate in study group was obviously lower than control group at 3 months after treatment (P < .05). There were no serious adverse reactions in both group, and no distinct difference between 2 groups was found (P > .05). CONCLUSION: Acupuncture united with Ningshen mixture has a significant therapeutic effect and high safety in climacteric insomnia patients. It can effectively improve the neurotransmitter levels, clinical symptoms and sleep quality, and reduce the recurrence rate of climacteric insomnia patients, which has high clinical application value and is worthy of clinical promotion.


Subject(s)
Acupuncture Therapy , Drugs, Chinese Herbal , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/therapy , Female , Acupuncture Therapy/methods , Middle Aged , Drugs, Chinese Herbal/therapeutic use , Combined Modality Therapy , Menopause , Treatment Outcome , Sleep Quality , beta-Endorphin/blood , beta-Endorphin/metabolism , Serotonin/metabolism
8.
Comput Biol Med ; 174: 108326, 2024 May.
Article in English | MEDLINE | ID: mdl-38599066

ABSTRACT

Accurate and expeditious segmentation of stroke lesions can greatly assist physicians in making accurate medical diagnoses and administering timely treatments. However, there are two limitations to the current deep learning methods. On the one hand, the attention structure utilizes only local features, which misleads the subsequent segmentation; on the other hand, simple downsampling compromises task-relevant detailed semantic information. To address these challenges, we propose a novel feature refinement and protection network (FRPNet) for stroke lesion segmentation. FRPNet employs a symmetric encoding-decoding structure and incorporates twin attention gate (TAG) and multi-dimension attention pooling (MAP) modules. The TAG module leverages the self-attention mechanism and bi-directional attention to extract both global and local features of the lesion. On the other hand, the MAP module establishes multidimensional pooling attention to effectively mitigate the loss of features during the encoding process. Extensive comparative experiments show that, our method significantly outperforms the state-of-the-art approaches with 60.16% DSC, 36.20px HD and 85.72% DSC, 27.02px HD on two ischemic stroke datasets that contain all stroke stages and several sequences of stroke images. The excellent results that exceed those of existing methods illustrate the efficacy and generalizability of the proposed method. The source code is released on https://github.com/wu2ze2lin2/FRPNet.


Subject(s)
Brain , Magnetic Resonance Imaging , Stroke , Humans , Magnetic Resonance Imaging/methods , Stroke/diagnostic imaging , Brain/diagnostic imaging , Deep Learning , Image Interpretation, Computer-Assisted/methods , Algorithms
9.
Food Funct ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38650575

ABSTRACT

Barley, rich in bioactive components including dietary fiber, polyphenolic compounds and functional proteins, exhibits health benefits such as regulating glucose and lipid metabolism. Previous studies have found that the content and composition of free phenolic acids in barley may be significantly changed by fermentation with the laboratory patented strain Lactobacillus plantarum dy-1 (L. p dy-1), but the mechanism of enzymatic release of phenolic acid remains to be elucidated. Based on this, this study aimed to identify the key enzyme in L. p dy-1 responsible for releasing the bound phenolic acid and to further analyze its enzymatic properties. The Carbohydrate-Active enZYmes database revealed that L. p dy-1 encodes 7 types of auxiliary enzymes, among which we have identified a membrane sulfatase. The enzyme gene LPMS05445 was heterologous to that expressed in E. coli, and a recombinant strain was induced to produce the target protein and purified. The molecular weight of the purified enzyme was about 59.9 kDa, with 578.21 U mg-1 enzyme activity. The optimal temperature and pH for LPMS05445 expression were 40 °C and 7.0, respectively. Furthermore, enzymatic hydrolysis by LPMS05445 can obviously change the surface microstructure of dietary fiber from barley bran and enhance the release of bound phenolic acid, thereby increasing the free phenolic acid content and improving its physiological function. In conclusion, sulfatase produced by Lactobacillus plantarum dy-1 plays a key role in releasing bound phenolic acids during the fermentation of barley.

10.
Phytochem Anal ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659238

ABSTRACT

INTRODUCTION: The sesquiterpene glycosides (SGs) from Dendrobium nobile Lindl. have immunomodulatory effects. However, there are no studies on the growth conditions affecting its contents and quantitative analysis methods. OBJECTIVE: In the present study, a quantitative analysis method for six SGs from D. nobile was established. We explored which growth conditions could affect the contents of SGs, providing a basis for the cultivation and clinical application of D. nobile. METHODS: Firstly, based on the optimization of mass spectrometry parameters and extraction conditions for six SGs in D. nobile, a method for the determination of the contents of six SGs was established using high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (HPLC-QqQ-MS/MS) in multiple reaction monitoring (MRM) mode. Then, the methodology of the established method was validated. Secondly, the established method was applied to determine the contents of six SGs from 78 samples of D. nobile grown under different growth conditions. Finally, chemometrics analysis was employed to analyze the results and select optimal growth conditions for D. nobile. RESULTS: The results indicated significant variations in the contents of SGs from D. nobile grown under different growth conditions. The primary factors influencing SG contents included age, geographical origin, altitude, and epiphytic pattern. CONCLUSION: Therefore, the established method for determining SG contents from D. nobile is stable. In particular, the SG contents were relatively high in samples of 3-year-old D. nobile grown at an altitude of approximately 500 m on Danxia rocks in Chishui, Guizhou.

11.
Eur J Med Chem ; 270: 116345, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564826

ABSTRACT

Several generations of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors have been developed for the treatment of non-small cell lung cancer (NSCLC) in clinic. However, emerging drug resistance mediated by new EGFR mutations or activations by pass, leads to malignant progression of NSCLC. Proteolysis targeting chimeras (PROTACs) have been utilized to overcome the drug resistance acquired by mutant EGFR, newly potent and selective degraders are still need to be developed for clinical applications. Herein, we developed autophagosome-tethering compounds (ATTECs) in which EGFR can be anchored to microtubule-associated protein-1 light chain-3B (LC3B) on the autophagosome with the assistance of the LC3 ligand GW5074. A series of EGFR-ATTECs have been designed and synthesized. Biological evaluations showed that these compounds could degrade EGFR and exhibited moderate inhibitory effects on certain NSCLC cell lines. The ATTEC 12c potently induced the degradation of EGFR with a DC50 value of 0.98 µM and a Dmax value of 81% in HCC827 cells. Mechanistic exploration revealed that the lysosomal pathway was mainly involved in this degradation. Compound 12c also exhibited promising inhibitory activity, as well as degradation efficiency in vivo. Our study highlights that EGFR-ATTECs could be developed as a new expandable EGFR degradation tool and also reveals a novel potential therapeutic strategy to prevent drug resistance acquired EGFR mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Cell Proliferation , Autophagosomes/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor , ErbB Receptors , Mutation , Drug Resistance, Neoplasm
12.
Adv Mater ; : e2400236, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563243

ABSTRACT

Skin-interfaced high-sensitive biosensing systems to detect electrophysiological and biochemical signals have shown great potential in personal health monitoring and disease management. However, the integration of 3D porous nanostructures for improved sensitivity and various functional composites for signal transduction/processing/transmission often relies on different materials and complex fabrication processes, leading to weak interfaces prone to failure upon fatigue or mechanical deformations. The integrated system also needs additional adhesive to strongly conform to the human skin, which can also cause irritation, alignment issues, and motion artifacts. This work introduces a skin-attachable, reprogrammable, multifunctional, adhesive device patch fabricated by simple and low-cost laser scribing of an adhesive composite with polyimide powders and amine-based ethoxylated polyethylenimine dispersed in the silicone elastomer. The obtained laser-induced graphene in the adhesive composite can be further selectively functionalized with conductive nanomaterials or enzymes for enhanced electrical conductivity or selective sensing of various sweat biomarkers. The possible combination of the sensors for real-time biofluid analysis and electrophysiological signal monitoring with RF energy harvesting and communication promises a standalone stretchable adhesive device platform based on the same material system and fabrication process.

13.
J Glob Health ; 14: 04068, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606605

ABSTRACT

Background: Central and bridge nodes can drive significant overall improvements within their respective networks. We aimed to identify them in 16 prevalent chronic diseases during the coronavirus disease 2019 (COVID-19) pandemic to guide effective intervention strategies and appropriate resource allocation for most significant holistic lifestyle and health improvements. Methods: We surveyed 16 512 adults from July 2020 to August 2021 in 30 territories. Participants self-reported their medical histories and the perceived impact of COVID-19 on 18 lifestyle factors and 13 health outcomes. For each disease subgroup, we generated lifestyle, health outcome, and bridge networks. Variables with the highest centrality indices in each were identified central or bridge. We validated these networks using nonparametric and case-dropping subset bootstrapping and confirmed central and bridge variables' significantly higher indices through a centrality difference test. Findings: Among the 48 networks, 44 were validated (all correlation-stability coefficients >0.25). Six central lifestyle factors were identified: less consumption of snacks (for the chronic disease: anxiety), less sugary drinks (cancer, gastric ulcer, hypertension, insomnia, and pre-diabetes), less smoking tobacco (chronic obstructive pulmonary disease), frequency of exercise (depression and fatty liver disease), duration of exercise (irritable bowel syndrome), and overall amount of exercise (autoimmune disease, diabetes, eczema, heart attack, and high cholesterol). Two central health outcomes emerged: less emotional distress (chronic obstructive pulmonary disease, eczema, fatty liver disease, gastric ulcer, heart attack, high cholesterol, hypertension, insomnia, and pre-diabetes) and quality of life (anxiety, autoimmune disease, cancer, depression, diabetes, and irritable bowel syndrome). Four bridge lifestyles were identified: consumption of fruits and vegetables (diabetes, high cholesterol, hypertension, and insomnia), less duration of sitting (eczema, fatty liver disease, and heart attack), frequency of exercise (autoimmune disease, depression, and heart attack), and overall amount of exercise (anxiety, gastric ulcer, and insomnia). The centrality difference test showed the central and bridge variables had significantly higher centrality indices than others in their networks (P < 0.05). Conclusion: To effectively manage chronic diseases during the COVID-19 pandemic, enhanced interventions and optimised resource allocation toward central lifestyle factors, health outcomes, and bridge lifestyles are paramount. The key variables shared across chronic diseases emphasise the importance of coordinated intervention strategies.


Subject(s)
Autoimmune Diseases , COVID-19 , Eczema , Hypertension , Irritable Bowel Syndrome , Liver Diseases , Myocardial Infarction , Prediabetic State , Pulmonary Disease, Chronic Obstructive , Sleep Initiation and Maintenance Disorders , Adult , Humans , Quality of Life , Pandemics , Ulcer , Chronic Disease , Life Style , COVID-19/epidemiology , Outcome Assessment, Health Care , Cholesterol
14.
Clin Case Rep ; 12(4): e8680, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571902

ABSTRACT

Key Clinical Message: In a patient with metastatic breast cancer, an acquired BRCA mutation in the BRCA gene was detected, resulting in benefits from olaparib treatment. This underscores the importance of ongoing genetic phenotype testing after paclitaxel chemotherapy. Abstract: Triple-negative breast cancer (TNBC) is associated with a poor prognosis and elevated mortality risk. BRCA mutations are commonly regarded as prevalent mutations in TNBC patients, strongly associated with congenital familial heredity. Dynamic changes in mutation sites, however, are rarely reported. In this case report, we report a 59-year-old TNBC patient who developed pulmonary metastases post-chemoradiotherapy. No BRCA mutations were detected through NGS. After 7.6 months of nab-paclitaxel treatment, the patient experienced progression of lung metastases, and BRCA mutations were detected through NGS testing. Subsequent administration of olaparib resulted in a reduction in lung metastasis, demonstrating significant therapeutic efficacy. This case underscores the infrequent occurrence of treatment-induced BRCA mutations and emphasizes the significance of dynamic NGS genetic testing for real-time assessment of a patient's mutational status.

15.
Front Hum Neurosci ; 18: 1342931, 2024.
Article in English | MEDLINE | ID: mdl-38681742

ABSTRACT

Objectives: The auditory spatial processing abilities mature throughout childhood and degenerate in older adults. This study aimed to compare the differences in onset cortical auditory evoked potentials (CAEPs) and location-evoked acoustic change complex (ACC) responses among children, adults, and the elderly and to investigate the impact of aging and development on ACC responses. Design: One hundred and seventeen people were recruited in the study, including 57 typically-developed children, 30 adults, and 30 elderlies. The onset-CAEP evoked by white noise and ACC by sequential changes in azimuths were recorded. Latencies and amplitudes as a function of azimuths were analyzed using the analysis of variance, Pearson correlation analysis, and multiple linear regression model. Results: The ACC N1'-P2' amplitudes and latencies in adults, P1'-N1' amplitudes in children, and N1' amplitudes and latencies in the elderly were correlated with angles of shifts. The N1'-P2' and P2' amplitudes decreased in the elderly compared to adults. In Children, the ACC P1'-N1' responses gradually differentiated into the P1'-N1'-P2' complex. Multiple regression analysis showed that N1'-P2' amplitudes (R2 = 0.33) and P2' latencies (R2 = 0.18) were the two most variable predictors in adults, while in the elderly, N1' latencies (R2 = 0.26) explained most variances. Although the amplitudes of onset-CAEP differed at some angles, it could not predict angle changes as effectively as ACC responses. Conclusion: The location-evoked ACC responses varied among children, adults, and the elderly. The N1'-P2' amplitudes and P2' latencies in adults and N1' latencies in the elderly explained most variances of changes in spatial position. The differentiation of the N1' waveform was observed in children. Further research should be conducted across all age groups, along with behavioral assessments, to confirm the relationship between aging and immaturity in objective ACC responses and poorer subjective spatial performance. Significance: ACCs evoked by location changes were assessed in adults, children, and the elderly to explore the impact of aging and development on these differences.

16.
Ear Nose Throat J ; : 1455613241238829, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38590173

ABSTRACT

Cochlear implantation (CI) is the most effective solution for patients with severe-to-profound sensorineural hearing loss, especially in children. However, a major postoperative complication, known as chronic suppurative otitis media (CSOM), poses challenges for both doctors and families of the patients, which can affect post-CI hearing outcomes. We present the case of post-CI CSOM in a 15-year-old girl. She had been utilizing a unilateral cochlear implant for 7 years and had been experiencing intermittent earache and discharge in her only audible ear for the past 15 months. After antibiotic treatment failed to resolve her symptoms, we opted for a tympanomastoidectomy, and removed the receiver-stimulator package while keeping the electrode inside her cochlea. Simultaneously, we inserted an irrigation and drainage tube into the mastoid and middle ear space to discharge the exudate and control infection by applying topical antibiotics. The patient's ear discharge had resolved within 1 month, and her tympanic membrane healed naturally. Our successful experience shows that antibiotic irrigation and draining have effectively controlled infection and accelerated wound healing in this patient with post-CI CSOM, and it further prompted the patient to undergo bilateral CI 9 months later.

17.
Adv Sci (Weinh) ; : e2308422, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520724

ABSTRACT

Accumulating evidence indicates that metabolic reprogramming of cancer cells supports the energy and metabolic demands during tumor metastasis. However, the metabolic alterations underlying lymph node metastasis (LNM) of cervical cancer (CCa) have not been well recognized. In the present study, it is found that lymphatic metastatic CCa cells have reduced dependency on glucose and glycolysis but increased fatty acid oxidation (FAO). Inhibition of carnitine palmitoyl transferase 1A (CPT1A) significantly compromises palmitate-induced cell stemness. Mechanistically, FAO-derived acetyl-CoA enhances H3K27 acetylation (H3K27Ac) modification level in the promoter of stemness genes, increasing stemness and nodal metastasis in the lipid-rich nodal environment. Genetic and pharmacological loss of CPT1A function markedly suppresses the metastatic colonization of CCa cells in tumor-draining lymph nodes. Together, these findings propose an effective method of cancer therapy by targeting FAO in patients with CCa and lymph node metastasis.

18.
Food Funct ; 15(8): 4276-4291, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38526568

ABSTRACT

Fermentation is an effective method for improving the nutritional quality and functional characteristics of grains. This study investigated changes in the structural, physicochemical, and functional properties of fermented barley dietary fiber (FBDF) exerted by Lactiplantibacillus plantarum dy-1 (Lp. plantarum dy-1) as well as its in vitro fecal fermentation characteristics. Lp. plantarum dy-1 fermentation remarkably changed the structure of FBDF, including the microstructure and monosaccharide components, correlating with improved water or oil retaining and cholesterol adsorption capacities. Additionally, Lp. plantarum dy-1 fermentation significantly (p < 0.05) promoted the release of bound phenolics from 6.24 mg g-1 to 6.93 mg g-1 during in vitro digestion, contributing to the higher antioxidant capacity and inhibitory activity of α-amylase and pancreatic lipase compared with those of raw barley dietary fiber (RBDF). A total of 14 phenolic compounds were detected in the supernatants of digestion and fermentation samples. During colonic fermentation, FBDF significantly increased the production of acetate, propionate, and butyrate (p < 0.05), inhibited the growth of Escherichia-Shigella, and promoted the abundance of SCFA-producing microbiota such as Faecalibacterium and Prevotella_9. In conclusion, Lp. plantarum dy-1 fermentation enhanced the physicochemical properties and in vitro fermentation characteristics of barley dietary fiber, representing a promising bioprocessing technology for modifying barley bran.


Subject(s)
Dietary Fiber , Feces , Fermentation , Hordeum , Dietary Fiber/metabolism , Dietary Fiber/analysis , Hordeum/chemistry , Feces/microbiology , Humans , Gastrointestinal Microbiome , Digestion , Antioxidants/metabolism , Fatty Acids, Volatile/metabolism , Lactobacillus plantarum/metabolism , Phenols/metabolism
19.
Sci Rep ; 14(1): 6127, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38480770

ABSTRACT

Patients with obstructive sleep apnea (OSA) are liable to have resistant hypertension (RH) associated with unfavorable cardiovascular events. It is of necessity to predict OSA patients who are susceptible to resistant hypertension. Hence, we conducted a retrospective study based on the clinical records of OSA patients admitted to Yixing Hospital Affiliated to Jiangsu University from January 2018 to December 2022. According to different time periods, patients diagnosed between January 2018 and December 2021 were included in the training set (n = 539) for modeling, and those diagnosed between January 2022 and December 2022 were enrolled into the validation set (n = 259) for further assessment. The incidence of RH in the training set and external validation set was comparable (P = 0.396). The related clinical data of patients enrolled were collected and analyzed through univariate analysis and least absolute shrinkage and selection operator (LASSO) logistic regression analysis to identify independent risk factors and construct a nomogram. Finally, five variables were confirmed as independent risk factors for OSA patients with RH, including smoking, heart disease, neck circumference, AHI and T90. The nomogram established on the basis of variables above was shown to have good discrimination and calibration in both the training set and validation set. Decision curve analysis indicated that the nomogram was useful for a majority of OSA patients. Therefore, our nomogram might be useful to identify OSA patients at high risk of developing RH and facilitate the individualized management of OSA patients in clinical practice.


Subject(s)
Hypertension , Sleep Apnea, Obstructive , Humans , Nomograms , Retrospective Studies , Hypertension/complications , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/diagnosis , Risk Factors
20.
Sci Total Environ ; 926: 171836, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38513853

ABSTRACT

Thorough investigations of urban-canopy drag primarily stemming from pressure drag on building surfaces are necessary given the turbulent flows within complex urban areas. Moreover, a gap persists regarding the relationships between canopy drag and breathability. Therefore, this work delves into the canopy-layer airflow dynamics for generic urban neighborhoods by performing three-dimensional Reynolds-Averaged Navier-Stokes simulations. A total of 32 subcases are examined, encompassing uniform- and varying-height and diverse plan area densities (λp, categorized into groups of sparse: 0.0625/0.067, medium: 0.23/0.25, and dense: 0.53/0.56). Results for the drag distribution highlight the windward-row shelter effect for the medium and the dense, local shelter by taller buildings, and distinct shapes of sectional drag forces (F⁎Z). Local velocity and mean age of air are found strongly positively and negatively correlated to F⁎Z, respectively, with distinct slopes in relation to λp. For the uniform-height, the normalized bulk drag (F⁎bulk, referred to as drag coefficient in literature) peaks for the medium with wake-interference regime; F⁎bulk demonstrates a maximum increase of over two times with height variation; moreover, F⁎bulk for varying-height groups exhibits a marked increase from the sparse to the medium, while remaining comparable values for the dense. The frontal area averaged drag (FAf,ave) exhibits a decreasing trend against λp across all cases. Further, FAf,ave exhibits strong correlations with λp and porosity, and with bulk ventilation indices such as spatially averaged velocity, air change rate, and normalized net escape velocity. Throughout the 'suburban-urban-suburban' canopy, medium neighborhoods exerting larger drag cause greater streamwise outdoor pressure drops and flow reductions compared to the sparse. However, dense neighborhoods with lower drag exhibit even larger pressure losses, which should be carefully scrutinized. The findings can inform urban planners in designing more aerodynamically efficient neighborhoods and guide strategies for improving air quality within urban environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...